Thermodynamic Properties of Generalized Exclusion Statistics

نویسندگان

  • Hyun Seok Yang
  • Chanyong Park
چکیده

We analytically calculate some thermodynamic quantities of an ideal g-on gas obeying generalized exclusion statistics. We show that the specific heat of a g-on gas (g 6= 0) vanishes linearly in any dimension as T → 0 when the particle number is conserved and exhibits an interesting dual symmetry that relates the particle-statistics at g to the hole-statistics at 1/g at low temperatures. We derive the complete solution for the cluster coefficients bl(g) as a function of Haldane’s statistical interaction g in D dimensions. We also find that the cluster coefficients bl(g) and the virial coefficients al(g) are exactly mirror symmetric (l=odd) or antisymmetric (l=even) about g = 1/2. In two dimensions, we completely determine the closed forms about the cluster and the virial coefficients of the generalized exclusion statistics, which exactly agree with the virial coefficients of an anyon gas of linear energies. We show that the g-on gas with zero chemical potential shows thermodynamic properties similar to the photon statistics. We discuss some physical implications of our results. PACS numbers: 05.30.-d, 05.70.Ce, 64.10.+h Typeset using REVTEX 1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

J un 1 99 7 Exclusonic Quasiparticles and Thermodynamics of Fractional Quantum Hall Liquids

Quasielectrons and quasiholes in the fractional quantum Hall liquids obey fractional (including nontrivial mutual) exclusion statistics. Their statistics matrix can be determined from several possible state-counting scheme, involving different assumptions on statistical correlations. Thermal activation of quasiparticle pairs and thermodynamic properties of the fractional quantum Hall liquids ne...

متن کامل

Generalized Lagrange theorem and thermodynamics of a multispecies quasiparticle gas with mutual fractional exclusion statistics

We discuss the relationship between the classical Lagrange theorem in mathematics and the quantum statistical mechanics and thermodynamics of an ideal gas of multispecies quasiparticles with mutual fractional exclusion statistics. First, we show that the thermodynamic potential and the density of the system are analytically expressed in terms of the language of generalized cluster expansions, w...

متن کامل

The thermodynamic limit for fractional exclusion statistics

I discuss Haldane's concept of generalised exclusion statistics (Phys. Rev. Lett. 67, 937, 1991) and I show that it leads to inconsistencies in the calculation of the particle distribution that maximizes the partition function. These inconsistencies appear when mutual exclusion statistics is manifested between different subspecies of particles in the system. In order to eliminate these inconsis...

متن کامل

Towards a quantum-mechanical model for multispecies exclusion statistics

It is shown how to construct many-particle quantum-mechanical spectra of particles obeying multispecies exclusion statistics, both in one and in two dimensions. These spectra are derived from the generalized exclusion principle and yield the same thermodynamic quantities as deduced from Haldane’s multiplicity formula. PACS numbers: 03.65.-w, 05.30.-d, 05.70.Ce

متن کامل

Kinetic Approach to Fractional Exclusion Statistics

Abstract: We show that the kinetic approach to statistical mechanics permits an elegant and efficient treatment of fractional exclusion statistics. By using the exclusion-inclusion principle recently proposed [Phys. Rev. E 49, 5103 (1994)] as a generalization of the Pauli exclusion principle, which is based on a proper definition of the transition probability between two states, we derive a var...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996